Generating random factored ideals in number fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating Random Factored Ideals in Number Fields

We present a randomized polynomial-time algorithm to generate a random integer according to the distribution of norms of ideals at most N in any given number field, along with the factorization of the integer. Using this algorithm, we can produce a random ideal in the ring of algebraic integers uniformly at random among ideals with norm up to N , in polynomial time. We also present a variant of...

متن کامل

Generating random factored Gaussian integers, easily

We present a (random) polynomial-time algorithm to generate a randomGaussian integer with the uniform distribution among those with norm at most N , along with its prime factorization. The method generalizes to finding a random ideal in the ring of integers of a quadratic number field together with its prime ideal factorization. We also discuss the analogous problem for higher degree number fie...

متن کامل

Hilbert-Speiser number fields and Stickelberger ideals

Let p be a prime number. We say that a number field F satisfies the condition (H ′ pn) when any abelian extension N/F of exponent dividing p has a normal integral basis with respect to the ring of p-integers. We also say that F satisfies (H ′ p∞) when it satisfies (H ′ pn) for all n ≥ 1. It is known that the rationals Q satisfy (H ′ p∞) for all prime numbers p. In this paper, we give a simple c...

متن کامل

Generating Cosmological Gaussian Random Fields

We present a generic algorithm for generating Gaussian random initial conditions for cosmological simulations on periodic rectangular lattices. We show that imposing periodic boundary conditions on the real-space correlator and choosing initial conditions by convolving a white noise random field results in a significantly smaller error than the traditional procedure of using the power spectrum....

متن کامل

Applications of Prime Factorization of Ideals in Number Fields

For a number fieldK, that is, a finite extension of Q, and a prime number p, a fundamental theorem of algebraic number theory implies that the ideal (p) ⊆ OK factors uniquely into prime ideals as (p) = p1 1 · · · p eg g . In this paper we explore different interpretations of this using the factorization of polynomials in finite and p-adic fields and Galois theory. In particular, we present some...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2017

ISSN: 0025-5718,1088-6842

DOI: 10.1090/mcom/3283